Features

Low-Voltage, 60Ω , 4:1 Analog Multiplexer in QFN

General Description

The MAX4704 low-voltage, 4-channel analog multiplexer operates from a single +1.8V to +5.5V supply. The MAX4704 features break-before-make switching action with a $t_{ON} = 60$ ns and $t_{OFF} = 20$ ns at +3V.

When powered from a +2.7V supply, the device has a 60Ω (max) on-resistance (RoN), with 3Ω (max) RoN matching and 5Ω max R_{ON} flatness. The digital logic inputs are 1.8V-logic compatible from a +2.7V to +3.3V supply. The MAX4704 is available in both a space-saving 12-pin QFN (3mm x 3mm) package and a 10-pin µMAX package.

Applications

MP3 Players

Battery-Operated Equipment

Relay Replacement

Audio and Video Signal Routing

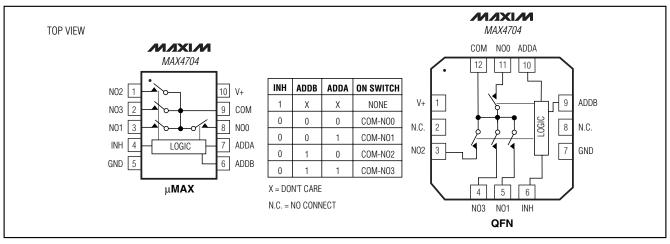
Low-Voltage Data-Acquisition Systems

Communications Circuits

PCMCIA Cards

Cellular Phones

Modems


Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

- ♦ 3mm x 3mm 12-Pin QFN Package
- ♦ Guaranteed On-Resistance: 60 Ω (max) (+2.7V supply) 40 Ω (max) (+5V supply)
- ♦ Guaranteed Match Between Channels: 3Ω (max)
- ♦ Guaranteed Flatness Over Signal Range: 5Ω (max)
- **♦** Guaranteed Low Leakage Currents: 100pA (max) at +25°C
- ♦ Switching Time: toN = 60ns, toFF = 20ns
- ♦ +1.8V to +5.5V Single-Supply Operation
- ♦ Rail-to-Rail® Signal Handling
- ◆ -3dB Bandwidth: >200MHz
- ♦ Low Crosstalk: -90dB (1MHz)
- ♦ High Off-Isolation: -85dB (1MHz)
- ♦ Low 3pC Charge Injection
- ♦ THD: 0.02%
- ♦ +1.8V CMOS-Logic Compatible

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4704EGC	-40°C to +85°C	12 QFN
MAX4704EUB	-40°C to +85°C	10 μMAX

Pin Configurations

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	
V+	0.3V to +6V
All Other Pins (Note 1)	-0.3V to $(V++0.3V)$
Continuous Current COM, NO	±20mA
Peak Current COM, NO_	
(pulsed at 1ms, 10% duty cycle)	±40mA
ESD per Method 3015.7	>2kV

Continuous Power Dissipation (T _A = +70°C)	
10-Pin µMAX (derate 4.7mW/°C above +70°C) 330mW
12-Pin QFN (derate 11.9mW/°C above +70°C)) 952mW
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range6	5°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on INH, ADD_, NO_, and COM exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +3.3V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at V+=+3V and $T_A=+25^{\circ}\text{C}.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} _			0		V+	V
On Desistance	D	V+ = +2.7V, I _{COM} = 5mA,	+25°C		50	60	Ω
On-Resistance	Ron	$V_{NO_{-}} = +1.3V$	T _{MIN} to T _{MAX}			70	32
On-Resistance Match	ΔRon	$V+ = +2.7V$, $I_{COM} = 5mA$,	+25°C		1	3	Ω
Between Channels (Note 4)	ΔHON	$V_{NO} = +1.3V$	T _{MIN} to T _{MAX}			5	52
On-Resistance Flatness	RFLAT (ON)	$V+ = +2.7V$, $I_{COM} = 5mA$,	+25°C		3	5	Ω
(Note 5)	TIFLAT (ON)	$V_{NO} = +1V, +1.3V, +1.8V$	T _{MIN} to T _{MAX}			10	
NO_ Off-Leakage	I _{NO_(OFF)}	$V + = +3.3V, V_{COM} = +0.3V, +3V$	+25°C	-0.1	±0.01	0.1	nA
Current (Note 6)	INO_(OFF)	$V_{NO} = +3V, +0.3V$	T _{MIN} to T _{MAX}	-1		1	117 (
COM On-Leakage Current		$V+ = +3.3V$, $V_{COM} = +0.3V$, $+3V$ $V_{NO}_{-} = +0.3V$, $+3V$, or floating	+25°C	-0.5	±0.01	0.5	^
(Note 6)			T _{MIN} to T _{MAX}	-5		5	nA
COM Off-Leakage Current	la or water	$V_{+} = +3.3V, V_{COM} = +0.3V, +3V$	+25°C	-0.5	±0.01	0.5	nA
(Note 6)	ICOM(OFF)	$V_{NO_{-}} = +3V, +0.3V$	T _{MIN} to T _{MAX}	-5		5	
DYNAMIC							
Address Transition Time	t==	$V_{NO} = +1.5V, R_{L} = 300\Omega,$	+25°C		20	60	200
Address Transition Time	ttrans	C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}			70	ns
Inhibit Turn-On Time	tou	$V_{NO} = +1.5V, R_L = 300\Omega,$	+25°C		25	60	
mnibit rum-on nime	ton	C _L = 35pF, Figure 3	T _{MIN} to T _{MAX}			70	ns
Inhibit Turn-Off Time	torr	$V_{NO} = +1.5V, R_{L} = 300\Omega,$	+25°C		10	20	
Inhibit Turn-Off Time toff	C _L = 35pF, Figure 3	T _{MIN} to T _{MAX}			30	ns	
Break-Before-Make Time	toom	$V_{NO} = +1.5V, R_L = 300\Omega,$	+25°C		20		ne
(Note 7)	tBBM	C _L = 35pF, Figure 4	T _{MIN} to T _{MAX}	2			ns
Charge Injection	Q	V _{GEN} = 0, R _{GEN} = 0, C _L = 1.0nF, Figure 5			2		рС

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+=+2.7V \text{ to } +3.3V, V_{IH}=+1.4V, V_{IL}=+0.5V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at V+=+3V and $T_A=+25^{\circ}\text{C}.)$ (Notes 2, 3)

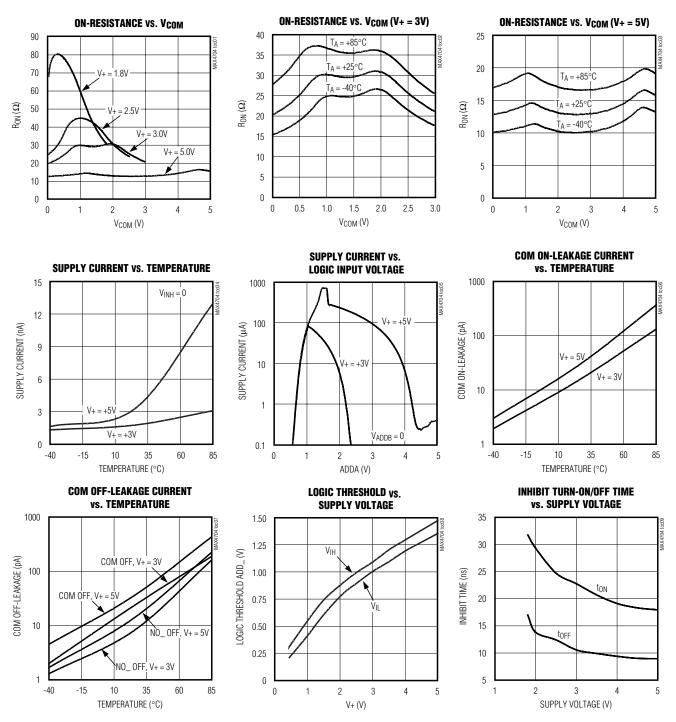
PARAMETER	SYMBOL	CONDITIONS	TA	MIN TYP	MAX	UNITS
On-Channel -3dB Bandwidth	BW	Signal = 0dBm, 50Ω in and out, Figure 6		>200		MHz
Off-Isolation (Note 8)	V _{ISO}	$f = 1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 6		-85		dB
Crosstalk (Note 9)	V _C T	$f = 1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 6		-90		dB
NO_ Off-Capacitance	C _{NO_(OFF)}	f = 1MHz, V _{NO} = GND, Figure 7		7		рF
COM On-Capacitance	C _{COM} (ON)	f = 1MHz, V _{NO} = GND, Figure 7		19		рF
COM Off-Capacitance	C _C OM(OFF)	f = 1MHz, V _{NO} = GND, Figure 7		15		рF
DIGITAL I/O			•			
Input Logic High	VIH			1.4		V
Input Logic Low	V _{IL}				0.5	V
Input Leakage Current	I _{IH} , I _{IL}	ADD_, INH = 0 or V+		-1	1	μΑ
SUPPLY					•	
Power-Supply Range	V+			1.8	5.5	V
Power-Supply Current	l+	V+ = +5.5V, ADD_, INH = 0 or V+			1	μΑ

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+=+4.5V \text{ to } +5.5V, V_{IH}=+2.0V, V_{IL}=+0.8V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at V+=+5V and $T_A=+25^{\circ}\text{C}.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} _			0		V+	V
On Registence	Davi	$V + = +4.5V$, $I_{COM} = 5mA$,	+25°C		30	40	Ω
On-Resistance	Ron)N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T _{MIN} to T _{MAX}			50	52
On-Resistance Match	ΔRON	$V+ = +4.5V$, $I_{COM} = 5mA$, $V_{NO} = +3.5V$	+25°C		1	2	Ω
Between Channels (Note 4)	ΔhON		T _{MIN} to T _{MAX}			3	52
On-Resistance Flatness	D=	$V + = +4.5V$, $I_{COM} = 5mA$,	+25°C		3	5	0
(Note 5)	RFLAT (ON)	$V_{NO} = +1V, +2.25V, +3.5V$	T _{MIN} to T _{MAX}			10	Ω
NO_ Off-Leakage	lue (ess)	$V_{NO_(OFF)}$ $V_{NO_} = +5.5V, V_{COM} = +0.5V, +5V$ $V_{NO_} = +5V, +0.5V$	+25°C	-0.1	±0.01	0.1	- Λ
Current (Note 6)	INO_(OFF)		T _{MIN} to T _{MAX}	-1		1	nA
COM On-Leakage Current	loor way n	$V+ = +5.5V, V_{COM} = +0.5V, +5V$	+25°C	-0.5	±0.01	0.5	
(Note 6)	ICOM(ON)	V_{NO} = +0.5V, +5V, or floating	T _{MIN} to T _{MAX}	-5		5	nA

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)


 $(V+=+4.5V \text{ to } +5.5V, V_{IH}=+2.0V, V_{IL}=+0.8V, T_A=-40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at V+=+5V and $T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS		
COM Off-Leakage Current	loon/off)	$V + = +5.5V, V_{COM} = +0.5V, +5V$	+25°C	-0.5	±0.01	0.5	nA		
CON On-Leakage Current	ICOM(OFF)	$V_{NO_{-}} = +5V, +0.5V$	T _{MIN} to T _{MAX}	-5		5	IIA		
DYNAMIC	DYNAMIC								
Address Transition Time	ttrans	$V_{NO} = +3V, R_L = 300\Omega,$	+25°C		15	35	ns		
Address Hansillon Fille	THANS	C _L = 35pF, Figure 2	T _{MIN} to T _{MAX}			40	113		
Inhibit Turn-On Time	ton	$V_{NO} = +3V, R_L = 300\Omega,$	+25°C		18	35	ns		
Timble runn on time	·ON	$C_L = 35pF$, Figure 3	T _{MIN} to T _{MAX}			40	110		
Inhibit Turn-Off Time	toff	$V_{NO} = +3V, R_L = 300\Omega,$	+25°C		9	20	ns		
THIRDIT TUTT ON THIRD	1011	C _L = 35pF, Figure 3	T _{MIN} to T _{MAX}			30	110		
Break-Before-Make Time	tBBM	$V_{NO} = +3V, R_L = 300\Omega,$	+25°C		20		ns		
(Note 7)	rddivi	C _L = 35pF, Figure 4	T _{MIN} to T _{MAX}	2			113		
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1.0$ nF, Figure 5			3		рС		
On-Channel -3dB Bandwidth	BW	Signal = 0dBm, 50Ω in and out, Figure 6			>200		MHz		
Off-Isolation (Note 8)	V _{ISO}	$f = 1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 6			-85		dB		
Crosstalk (Note 9)	V _{CT}	$f = 1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Figure 6			-90		dB		
Total Harmonic Distortion	THD	$f = 20Hz$ to $20kHz$, $1Vp-p$, $R_L = 600\Omega$			0.02		%		
DIGITAL I/O									
Input Logic High	VIH			2.0			V		
Input Logic Low	V _{IL}					0.8	V		
Input Leakage Current	I _{IH} , I _{IL}	ADD_, INH = 0 or V+		-1		1	μΑ		
SUPPLY									
Power-Supply Range	V+			1.8		5.5	V		
Positive Supply Current	l+	V+ = +5.5V, ADD_, INH = 0 or V+				1	μΑ		

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- **Note 3:** -40°C specifications are guaranteed by design.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- **Note 6:** Leakage currents are 100% tested at $T_A = +85$ °C. Limits across the full temperature range are guaranteed by correlation.
- Note 7: Guaranteed by design.
- Note 8: Off-Isolation = $20log_{10}$ (V_{COM} / V_{NO}), V_{COM} = output, V_{NO} = input to off switch.
- Note 9: Between any two switches.

Typical Operating Characteristics

 $(T_A = +25$ °C, unless otherwise noted.)

0.01

6

10

FREQUENCY (Hz)

Low-Voltage, 60 Ω , 4:1 Analog Multiplexer in QFN

Typical Operating Characteristics (continued)

0

-40

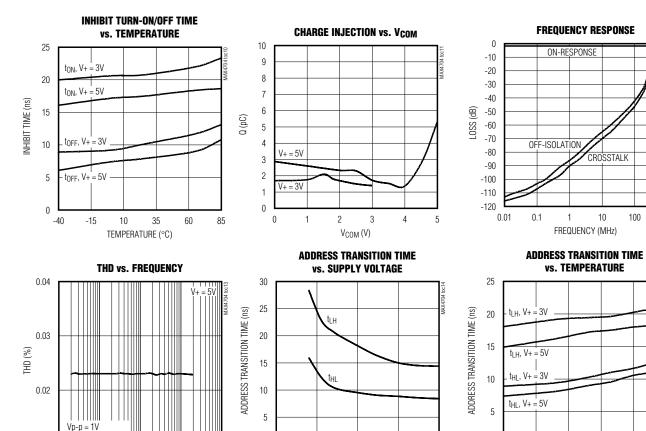
-15

10

TEMPERATURE (°C)

35

CROSSTALK


FREQUENCY (MHz)

100

1000

85

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

0

100k

3

SUPPLY VOLTAGE (V)

Pin Description

P	IN	NAME	FUNCTION
μМΑΧ	QFN	NAME	FUNCTION
10	1	V+	Positive Supply Voltage
_	2, 8	N.C.	No Connection. Not internally connected.
1	3	NO2	Analog Switch 2. Normally open.
2	4	NO3	Analog Switch 3. Normally open.
3	5	NO1	Analog Switch 1. Normally open.
4	6	INH	Inhibit. Connect to GND for normal operation. Connect to logic-level high to turn all switches off.
5	7	GND	Ground
6	9	ADDB	Address Decoder Selection B
7	10	ADDA	Address Decoder Selection A
8	11	NO0	Analog Switch 0. Normally open.
9	12	COM	Analog Switch Common Terminal

Detailed Description

The MAX4704 low-voltage, 4-channel analog multiplexer operates from a single +1.8V to +5.5V supply. When powered from a +2.7V supply, the device has a 60Ω (max) on-resistance (RoN), with 3Ω (max) RoN matching and 5Ω (max) RoN flatness. The digital logic inputs are +1.8V-logic compatible from a +2.7V to +3.3V supply.

Applications Information

Digital Control Inputs

The MAX4704 logic inputs are +1.8V CMOS logic compatible for 3V operation and TTL compatible for 5V operation of V+. Driving ADD_ rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage (V+ to GND) are passed with very little change in on-resistance (see *Typical Operating Characteristics*). The switches are bidirectional, so the NO_ and COM pins can be either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond those listed may cause permanent damage to devices.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to <20mA, add a small-signal diode (D1) as shown in Figure 1. If the

analog signal can dip below GND, add D2. Adding protection diodes reduces the analog range to a diode drop (about 0.7V) below V+ (for D1), and a diode drop above ground (for D2). On-resistance increases slightly at low supply voltages. Maximum supply voltage (V+) must not exceed +6V.

Adding protection diode D2 causes the logic threshold to be shifted relative to GND. TTL compatibility is not guaranteed when D2 is added.

Protection diodes D1 and D2 also protect against some overvoltage situations. In the circuit in Figure 1, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

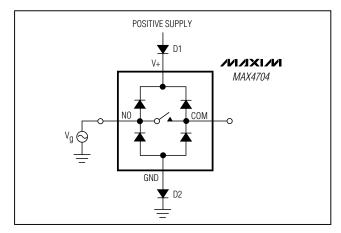


Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Test Circuits/Timing Diagrams

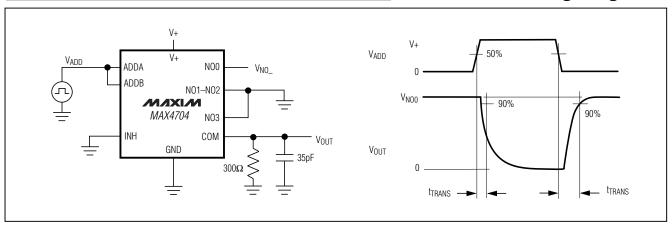


Figure 2. Address Transition Time

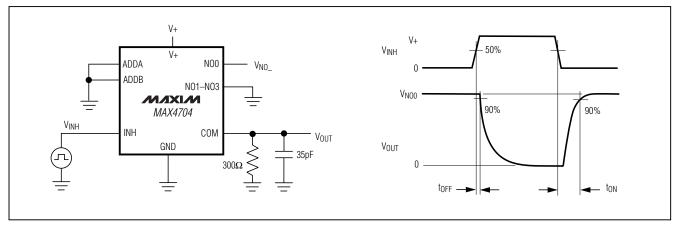


Figure 3. Inhibit Switching Times

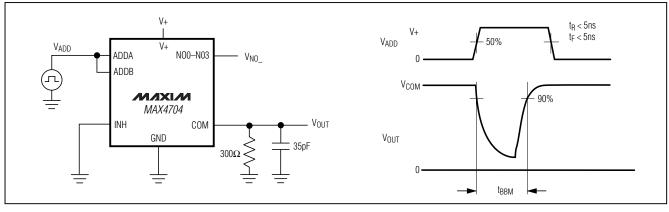


Figure 4. Break-Before-Make Interval

Test Circuits/Timing Diagrams (continued)

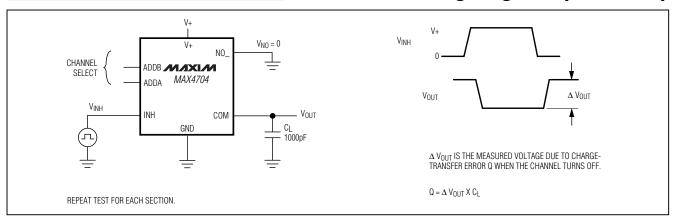


Figure 5. Charge Injection

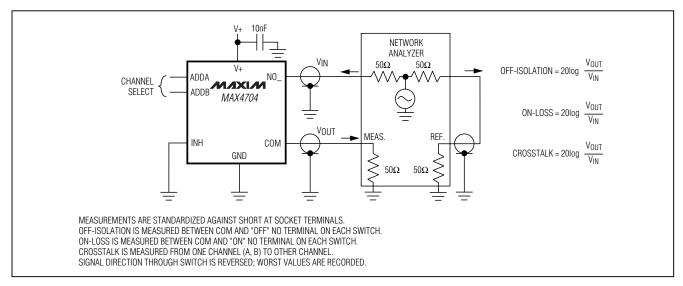
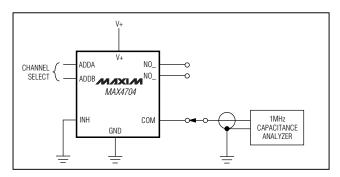
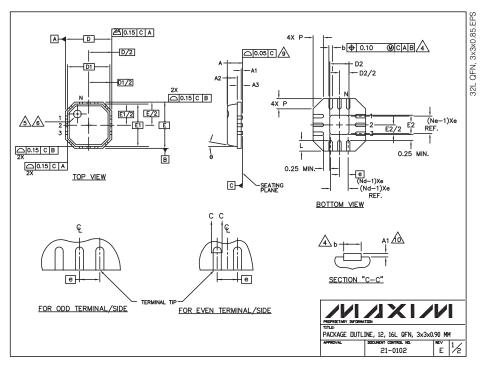
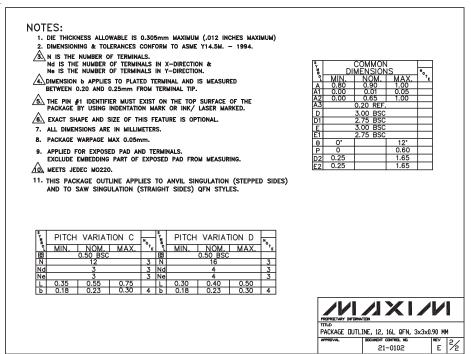


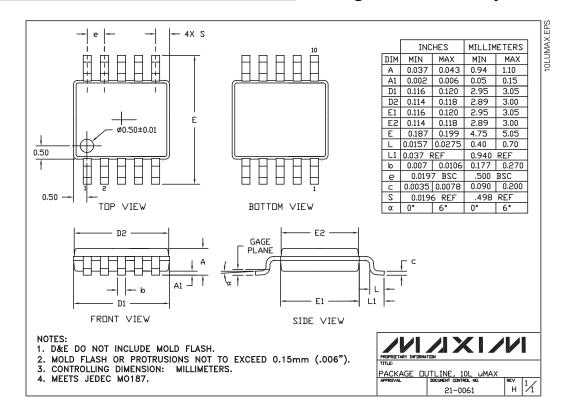
Figure 6. Off-Isolation, On-Loss, and Crosstalk




Figure 7. NO_/COM Capacitance


Chip Information

TRANSISTOR COUNT: 256


PROCESS: CMOS

Package Information

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.